NORWEGIAN DISTRIBUTOR: HAAKON ELLINGSEN AS

Haakon Ellingsen AS

Årenga 8, N-1340 Skui P.O. Box 184, N-1309 Rud
Phone +4767151200
sales@haakonellingsen.no
www.haakonellingsen.no

© HAAKON ELLINGSEN ${ }_{\text {su }}$

Limit Switch Boxes

Model		SP	SM	SB	SF	SS	HW	SX	SH
							$\frac{a s}{\cos }$		5
	Industry	(1)	(\%)	(8)	(8) 0^{1}	(6) ©	(6) (1)	(6) (1)	(6) 0
	${ }^{\text {Valve }}$ Type	Rotary Valves							
	Housing	Glass reinforced plastic	Nickel plated aluminium	Copper free aluminium	Copper free aluminium	316 stainless steel	Aluminium	Aluminium	Aluminium
	Cover	Polycarbonate	Polycarbonate	Polycarbonate	Aluminium	316 stainless steel	Aluminium	Aluminium	Aluminium
	IP Rating	IP 65	IP 65	IP 67	IP $66 / 67$ IP 67 M	PP 66 / 67 IP 67M	IP $66 / 67$	IP $66 / 67$	IP $66 / 67$
	$\begin{gathered} \text { Salitg } \\ \text { Rating } \\ \text { up tot } \end{gathered}$	SIL2	SIL2	SIL3	SIL3	SIL3	SIL3	SIL3	SIL3
	$\begin{aligned} & \text { ATEX, } \\ & \text { IECEX } \\ & \text { option } \end{aligned}$	Exia IIC T6	-	Exd IB T6	Exd $118+\mathrm{H} 2 \mathrm{~T} 6$				
	culus	-	-	Safe area or Class1/2 Div2	Class 1/2 Div 1/2	Class 1/2 Div 1/2			
	$\underset{\substack{\text { EAC } \\ \text { option }}}{ }$	\checkmark							
		\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	\checkmark	\checkmark
	$\begin{array}{\|c} \text { INMETRO } \\ \text { option } \end{array}$	-	-	-	-	-	-	\checkmark	\checkmark
	NEPSI option	-	-	-	-	-	-	-	-
	30	\checkmark							
	Flat	\checkmark							
	Multi Port Valves	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	None	-	-	-	\checkmark	\checkmark	\checkmark	-	-
	$\underset{\substack{\text { Electro } \\ \text { meechanic }}}{ }$	\checkmark							
	Magnetic	\checkmark							
	Inductive	\checkmark							
	4.20 mA	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	comminiation	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Twin Shaft	-	-	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Temp. Range Range	$\begin{aligned} & -20 \text { to }+80^{\circ} \mathrm{C} \\ & \left(-4 \text { to }+1766^{\circ}\right) \end{aligned}$	$\begin{aligned} & -20 \text { to }+80^{\circ} \mathrm{C} \\ & \left(-4 \text { to }+176{ }^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} -30 \mathrm{to}+80^{\circ} \mathrm{C} \\ \left(-22 \mathrm{to}+176{ }^{\circ}\right) \end{gathered}$	$\begin{aligned} & -60 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-76 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} -60 \text { to }+105^{\circ} \mathrm{C} \\ \left(-76 \text { to }+221^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{gathered} -60 \text { to }+105^{\circ} \mathrm{C} \\ \left(-76 \text { to }+221^{\circ} \text { F }\right) \end{gathered}$	$\begin{aligned} & -20 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-4 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -20 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-4 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$
	$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|c\|} \hline \text { Mountid } \\ \text { Kit } \end{array}$	\checkmark	\checkmark	-	-	-	\checkmark	-	-

Model		SK	SQ	SY	SW	SE	ES	BM	TB
								297	学安多
	Industry	（3） 18	（3）（1）	（4）（1） 1	（6） 8 （1）	（16） 8 d	（1）$\underbrace{4}$	（\％）（1）	（6） 11
	Valve Type	Rotary Valves	Rotary Valves	Rotary Valves	Rotary Valves	Linear Valves	Manual Valves	External Switches General Purpose	External Switches General Purpose
$\begin{aligned} & \bar{\Pi} \\ & \stackrel{\pi}{0} \\ & \stackrel{N}{N} \\ & \Sigma \end{aligned}$	Housing	Aluminium	316L stainless steel	Copper free aluminium	316 stainless steel	Copper free aluminium or 316 stainless steel	Copper free aluminium or 316 stainless steel	316 stainless steel	316 stainless steel or aluminium
	Cover	Aluminium	316L stainless steel	Copper free aluminium	316 stainless steel	Copper free aluminium or 316 stainless steel	Copper free aluminium or 316 stainless steel	316 stainless steel	316 stainless steel or aluminium
	IP Rating	$\begin{aligned} & \text { IP } 66 \text { / } 67 \\ & \text { optional IP68 } \end{aligned}$	$\begin{aligned} & \text { IP } 66 \text { / } 67 \\ & \text { optional IP68 } \end{aligned}$	IP 66 ／ 68	IP 66 ／ 68	IP67 IP 67M	IP 68	IP 68 subsea option available	IP 68
	$\begin{gathered} \text { SII } \\ \begin{array}{c} \text { Rating } \\ \text { up to: } \end{array} \end{gathered}$	SIL3							
	ATEX IECEX option option	Exd IIC T6	Exd IIC T6	Exd IIC T6	Exd IIC T6	－	Exd IIC T6	Exd IIC T6 Exia IIC T4	Exd IIC T6
	cULus option	Class 1／2 Div $1 / 2$	－	Class 1／2 Div 1／2	Class 1／2 Div $1 / 2$	－	Class 1／2 Div 1／2	Class 1／2 Div 1／2	
	$\begin{aligned} & \text { EAC } \\ & \text { option } \end{aligned}$	\checkmark							
	$\begin{aligned} & \text { CCOE } \\ & \text { option } \end{aligned}$	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－
	INMETRO option	\checkmark	\checkmark	\checkmark	\checkmark	－	\checkmark	－	－
	NEPSI option	－	－	\checkmark	\checkmark	－	－	－	－
	3D	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－
	Flat	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－
	Multi Port Valves	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－
	None	－	－	－	－	\checkmark	\checkmark	\checkmark	\checkmark
	Electro mechanic	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－
	Magnetic	\checkmark							
	Inductive	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－
	$4-20 \mathrm{~mA}$	－	－	\checkmark	\checkmark	－	－	－	－
	$\underset{\substack{\text { Communication } \\ \text { Protocols }}}{ }$	－	－	\checkmark	\checkmark	－	－	－	－
	Twin Shaft	\checkmark	\checkmark	\checkmark	\checkmark	－	－	－	－
	$\begin{aligned} & \text { Temp. } \\ & \text { Max } \\ & \text { Range } \end{aligned}$	$\begin{aligned} & -55 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-67 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -55 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-67 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{gathered} -60 \text { to }+105^{\circ} \mathrm{C} \\ \left(-76 \text { to }+221^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & -60 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-76 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -50 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-58 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -65 \text { to }+150^{\circ} \mathrm{C} \\ & \left(-85 \text { to }+302^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -40 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-40 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$	$\begin{aligned} & -40 \text { to }+105^{\circ} \mathrm{C} \\ & \left(-40 \text { to }+221^{\circ} \mathrm{F}\right) \end{aligned}$
	Integrated Mounting Kit	Optional	Optional	－	－	－	－	－	－

Twin Shaft Design

The innovative twin shaft design provides user friendly installation, replacement, calibration and operation. Splitting the limit switch box into two halves improves the sealing arrangement to extend operating life in harsh or severe environments whilst reducing the possibility of failure.

Features:

- Shaft sections mate together with a simple and reliable mechanical linkage
- Each half of the switch box mechanically retains the shaft, preventing loss of components during disassembly
- The shaft is completely sealed from the external atmosphere, avoiding contamination of the lubricating grease
- The switch position indicator is permanently fixed to the top shaft to guarantee alignment during reassembly
- Electrical components are completely sealed once both halves of the switch box are reassembled

Upper shaft

Lower shaft

Visual Indication

Ever increasing market requirements push us to develop innovative solutions for position indication.

Code selection guide

Code Description

1	No visual position indicator	-	-
0	$3 \mathrm{D} 90^{\circ}$ red and green visual position indicator		4
Y	3D 90 yellow-black (open-close) visual position indicator		c
3	3D 180° visual position indicator		
A	3 D indicator for 3 way "L" 90° port valve		(1)
B	3D indicator for 3 way "T" 90° port valve		(1)
C	3D indicator for 3 way "L" 120° port valve		0
2	3D indicator for 3 way "T" 180° centre port blocked		
D	3D visual position indicator with single flux direction		
F	3 D visual position indicator for 60° rotation		
T	316 stainless steel 3D visual position indicator		5
U	Flexible indicator extension of 500 mm with red and green $90^{\circ} 3 \mathrm{D}$ visual position indicator		
V	Stainless steel rigid indicator extension with red and green $90^{\circ} 3 \mathrm{D}$ visual position indicator		
X	316 stainless steel compact disk indicator		
E	Aluminium disk indicator		

Visual Indicator code selection guide for SP-SM series

Code	Description
H	3D black and yellow flux indicator
Z	Flat yellow flux indicator

Approvals and Marking

Abstract

Electrical components require a specific protection method in explosive atmospheres due to the presence of gas or dust. Different geographical regions are subject to local standards and certification to guarantee safety against explosion risks. We offer a complete range of certifications, covering worldwide requirements.

Hazardous Areas and Ignition

Explosions in hazardous areas occur when flammable liquids, vapours, gases or combustible dusts are mixed with oxygen and an ignition source, causing a fire or explosion. Limiting oxygen or gas is difficult, therefore the solution is to control the ignition source or safely contain the explosion.

Intrinsically Safe Protection Method

The intrinsically safe protection method works by reducing the power supplied into the hazardous area with an Ex'ia' barrier. The power reaching the hazardous area and the device is insufficient to generate a spark thus avoiding ignition.

Explosionproof Protection Method

The explosionproof protection method guarantees that in case an explosion should happen, it will be contained inside the enclosure. All mechanical joints of the device, such as the lid to body connection, cable entries and shaft assembly have flame paths, designed and certified to ensure an explosion is contained.

Safe Area
Safe Area

Approvals and Marking

Code selection guide
ES

Safe area	Wo	Zo	Yo
Explosionproof/ flameproof (Exd IIC)			
Non-incendive (Exd enclosure)			

X2	D2	E2	U7	S7	T7	G2	F2	H2
			U8	S8	T8			

* Excluding SQ and TB series
** SY SW series only

Switch and Sensors

Soldo limit switch boxes can include mechanical，magnetic or inductive proximity switches to fulfil your plant feedback requirements．With over 20 years experience in valve automation feedback，Soldo offers a complete selection of magnetic limit switches
to meet the most critical and demanding requirements．Inert gas hermetical sealing，high power loops，different contact forms and alternative materials are all satisfied with high quality Soldo switches．

SPDT switches

Code 01

－SPDT silver plated snap action switch

－High power loop：rating up to 5A＠ 250 VAC－0，6A＠ 125 VDC
－Temperature range： -40 to $+125^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+257^{\circ} \mathrm{F}\right)$
Code 03 Ex
－SPDT gold plated snap action switch
－Rating up to 3A＠ 250 VAC－ 1 mA ＠ 24 VDC
－Temperature range： -40 to $+125^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+257^{\circ} \mathrm{F}\right)$

Code 5P＂16

－SPDT silver plated snap acting switch
－High power loop：rating up to 5A＠ 250 VAC
－Temperature range -50 to $+204^{\circ} \mathrm{C}\left(-58\right.$ to $\left.399^{\circ} \mathrm{F}\right)$
－Short time temperature range Maximum $250^{\circ} \mathrm{C}\left(482^{\circ} \mathrm{F}\right)$ for 2 hours Maximum $300^{\circ} \mathrm{C}\left(572^{\circ} \mathrm{F}\right)$ for 70 minutes

DPDT switches

Code 1F

－DPDT silver plated snap action switch
－High power loop：rating up to 5A＠ 250 VAC，0．1A＠ 80 VDC
－Temperature range： -40 to $+120^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+248^{\circ} \mathrm{F}\right)$
Code 06 （ ε_{x}
－DPDT gold plated snap action switch
－Rating up to 0．1A＠ 250 VAC， 0．1A＠ 80 VDC
－Temperature range： -40 to $+120^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+248^{\circ} \mathrm{F}\right)$

Magnetic switches

SPDT switches

CODE N1＊（4）
－NOVA V3 ${ }^{\text {Tm }}$ SPDT hermetically sealed snap action proximity switch
－High power loop：rating up to 5A＠ 250 VAC－5A＠ 28 VDC
－Temperature range： -50 to $+95^{\circ} \mathrm{C}$（ -58 to $+203^{\circ} \mathrm{F}$ ）

CODE N3＊（4）
－NOVA V3 ${ }^{\text {TM }}$ SPDT hermetically sealed snap action proximity switch
－High power loop：rating up to 1 A＠ 250 VAC－1A＠ 30 VDC
－Temperature range： -50 to $+95^{\circ} \mathrm{C}\left(-58\right.$ to $\left.+203^{\circ} \mathrm{F}\right)$

CODE C4 紫（Ex）（H）

－SPDT hermetically sealed proximity reed switch
－Inert gas contact chamber
－Rating up to 1A＠ 24 VDC
－Temperature range： -60 to $+100^{\circ} \mathrm{C}\left(-76\right.$ to $\left.+212^{\circ} \mathrm{F}\right)$

DPDT switches

CODE N4 ©

－NOVA V3 ${ }^{\text {TM }}$ DPDT hermetically sealed snap action proximity switch
－High power loop：rating up to 5A＠ 250 VAC－ 5 A＠ 28 VDC
－Temperature range：
-20 to $+95^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+203^{\circ} \mathrm{F}\right)$
CODE C8 然 区x（H）
－DPDT hermetically sealed proximity reed switch
－Inert gas contact chamber
－Rating up to $1 \mathrm{~A} @ 24 \mathrm{VDC}$
－Temperature range： -60 to $+100^{\circ} \mathrm{C}\left(-76\right.$ to $\left.+212^{\circ} \mathrm{F}\right)$

Inductive sensors

Amplified sensors

Code 32

－ 2 wires NO
－LED indicator
－Operating voltage 5－60 VDC
－Operating current 2－100 mA
－Temperature range： -25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$

Code 73

－ 3 wires PNP NO
－LED indicator
－Operating voltage 10－30 VDC
－Operating current 0－100 mA
－Temperature range： -25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$

Code 75

－ 2 wires NO／NC programmable
－Operating voltage 5－36 VDC
－Operating current 200 mA
－Temperature range： -25 to $+80^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$

NAMUR Exia sensors

Code 70 Ex

－Nominal voltage 8 VDC
－Current consumption： 1 mA （target detected） 3 mA （target not detected）
－Temperature range： -25 to $+100^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+212^{\circ} \mathrm{F}\right)$

Code 62 Ex

－Nominal voltage 8 VDC
－Current consumption： 1 mA （target detected） 3 mA （target not detected）
－Temperature range： -50 to $+100^{\circ} \mathrm{C}\left(-58\right.$ to $\left.+212^{\circ} \mathrm{F}\right)$

If discrete feedback information is not enough, we can offer a complete range of analogue position transmitter options embedded within the switch
box enclosure for both safe and hazardous areas.

Analogue 4-20 mA current loops are commonly used for electronic signalling in industrial process control. 4 \& 20 mA
represents $0-100 \%$ of the measurement range. With the introduction of SMART devices, HART provides digital communication overlaid on the analogue 4-20 mA signal.

4-20 mA

Code TO

- 4-20 mA analog output
- Supply voltage 13-30 VDC
- Linearity $\pm 0,5 \%$ on full scale
- Direct or Reverse action
- Temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$

Code T4

- 4-20 mA analog output
- Additional magnetic reed switches
- Supply voltage 13-30 VDC
- Linearity $\pm 0,5 \%$ on full scale
- Direct or Reverse action
- Temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176{ }^{\circ} \mathrm{F}\right)$

Code T1

- 4-20 mA analog output
- Additional silver plated mech. switches
- Supply voltage 13-30 VDC
- Linearity $\pm 0,5 \%$ on full scale
- Direct or Reverse action
- Temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$

Code 77

- 4-20 mA analog output
- Additional inductive NAMUR sensors
- Supply voltage 13-30 VDC
- Linearity $\pm 0,5 \%$ on full scale
- Direct or Reverse action
- Temperature range: -25 to $+80^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+176{ }^{\circ} \mathrm{F}\right)$

4-20 mA HART MART

Code HO 的

- 4-20 mA HART Transmitter
- ATEX EEx ia IIC T6 / T4 certified
- Update time 120 ms
- Temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176{ }^{\circ} \mathrm{F}\right)$

Code H4 Ex

- 4-20 mA HART Transmitter
- Additional magnetic reed switches
- ATEX EEx ia IIC T6 / T4 certified
- Update time 120 ms
- Temperature range:
-40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$

Foundation Fieldbus / Profibus PA

Code FO ε_{x}

- Foundation Fieldbus / Profibus PA position Transmitter
- ATEX EEx ia IIC T6 / T4 certified
- Update time 400 ms
- Temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$
Code F4 Ex
- Foundation Fieldbus / Profibus PA position Transmitter
- Additional inductive NAMUR sensors
- ATEX EEx ia IIC T6 / T4 certified
- Update time 400 ms
- Temperature range: -25 to $+80^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$

Code H1

- 4-20 mA HART Transmitter
- Additional silver plated mech. switches
- ATEX EEx ia IIC T6 / T4 certified
- Update time 120 ms
- Temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$

Code H7 Ex

- 4-20 mA HART Transmitter
- Additional inductive NAMUR sensors
- ATEX EEx ia IIC T6 / T4 certified
- Update time 120 ms
- Temperature range: -25 to $+80^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+176{ }^{\circ} \mathrm{F}\right)$

Code F1

- Foundation Fieldbus / Profibus PA position Transmitter
- Additional silver plated mech. switches
- ATEX EEx ia IIC T6 / T4 certified
- Update time 400 ms
- Temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$

Special Options

A wide range of options for specific field applications.

Partial Stroke Test device

Code PO

The Partial Stroke Test (PST) device is a simple and reliable electro-mechanical system. A magnetic key initiates the test while an internal electro-mechanical system drives the actuator back to the opening position after the last position has been reached. Includes:

Code P4
Magnetic reed SPDT switches

Code P7

Exia inductive NAMUR sensors

Surge protector devices

Code S6

Surge protectors guard the device and all inner electrical components from external power overloads. Certification is available for Exia or Exd, with components in 316 stainless steel for harsh environments protection. Includes:

Code S7

Exia inductive NAMUR sensors

Code SC

Exia inductive NAMUR sensors tamper proof magnetic reed SPDT switches

End Of Line monitoring system

Code 28

End of line monitoring system to perform diagnostics on switches and wiring integrity. The DCS will detect feedback information as well as fault detection.

Applicable to electro-mechanical and magnetic switches, with reduced max rating capabilities.

- NAMUR simulated output
- Arctic capabilities down to $-60^{\circ} \mathrm{C}\left(-76^{\circ} \mathrm{F}\right)$
- SIL3 approved option

HART Communication

The HART Communication Protocol (Highway Addressable Remote Transducer) is a hybrid, analogue and digital, industrial automation protocol.

HART provides two simultaneous communication channels: the $4-20 \mathrm{~mA}$ analogue signal and a digital signal. The $4-20 \mathrm{~mA}$ signal communicates the primary measured value. Additional device information is communicated using a superimposed digital signal on the analogue one.

We can offer a complete range of 4-20 mA HART position transmitters with or without additional switches.

Refer to the Position Sensor section for a wider list of options and code selection guide.

Foundation Fieldbus Communication

We offer a complete range of Foundation Fieldbus position transmitters with or without additional digital feedback.

The communication head is suitable for use in an Intrinsically Safe Ex'ia' loop and provides full compatibility with the plant communication software.

Refer to the Position Sensor section for a wider list of options and code selection guide.

FOUNDATION

AS-i Communication

Superior productivity is one of the keys factors to successful business in the process automation sector. The secret to modern manufacturing is flexibility.

AS-Interface (AS-i) is the simplest of the industrial networking protocols used in PLC, DCS and PC-based automation systems. It is designed for connecting binary (ON/OFF) devices such as actuators and sensors in discrete manufacturing and process applications using a single cable.

Features

- Highly efficient alternative to hard wiring of field devices
- Excellent partner to Profibus, DeviceNet, Interbus and Industrial Ethernet network systems
- Proven in hundreds of thousands of applications
- Cut-down AS-i SW version available for ultra-simple devices
- Provides the ideal basis for Functional Safety in machinery safety/emergency stop applications

AS-I Communication Board

Code A1

AS-I communication board 4 In - 3 Out.
Up to 4 electro-mechanical switches and 3 solenoid valve connection.
Available on SB, SF, SS, HW, SY, SW series.

Code:

Profibus Communication

Profibus ${ }^{\circledR}$ Option

We introduced the Profibus communication bus into our HW series to provide a complete control unit, facing all demanding field applications.

Features and Benefits

- Weatherproof enclosure
- 3D red and green visual position indicator
- $2 ½$ " NPT cable entries
- $13 / 4$ " NPT cable entry
- Profibus communication board
- Two digital inputs for valve position detection
- Two extra dry contact inputs available
- Two digital outputs for solenoid valve connection
- Adjustable metal cams
- Integrated mounting legs for NAMUR actuators
- Integrated sov, 5/2 or 5/3 way configuration

Profibus Control Unit

Code PF

Profibus DP control unit.
Two digital feedback and two digital output for solenoid valves.

Code PG

Profibus DP feedback unit.
Two digital feedback and two digital output for solenoid valves.
Additional two mechanical switches 5A 250 VAC.
Both options available on HW series.

PROFT B6Tl

Signaling Leds

Code:

SP - SM limit switch box series

Compact limit switch box for industrial, water treatment and light duty applications.

Features

- Integrated mounting kit for NAMUR pattern
- Corrosion free glass reinforced plastic enclosure on SP series
- Nickel plated aluminium body on SM series
- 1 cable entry (SP) or 2 cable entries (SM) either metric or imperial
- Multiple indicator options
- Easy wiring through the terminal PCB board

Approvals

ATEX, EAC, CCOE:

Ex II 2GD Ex ia IIC T4/T5/T6
Ex ia IIIB T44 ${ }^{\circ} \mathrm{C} \mathrm{T}^{\circ} 08^{\circ} \mathrm{C}$ Db IP6*
Ta: $-20^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 80^{\circ} \mathrm{C}$
SIL certificate: Up to SIL 2 certified by TÜV
Protection rating: IP 65
IP 67 on request
Nema 4 4X on request

Temperature:

-20 to $+80^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ standard temperature range

SP limit switch box

SM limit switch box

SP - SM limit switch box series

SF - SS - SB limit switch box series

Multi purpose limit switch box for safe area or Intrinsically Safe applications.

Features

- Twin shaft design
- Self lubricating bushings
- Copper free aluminium or 316 stainless steel housing option for maximum corrosion protection
- 2 cable entries either metric or imperial
- Multiple indicator options
- Easy wiring through the terminal PCB board
- Position transmitter board optional
- Suitable for arctic environments

Approvals

ATEX, IECEx, EAC, CCOE:
SF-SS series (ATEX \& IECEx) Ex II 1GD Ex ia IIC T4...T6 Ga Ex ia IIIC T $95^{\circ} \mathrm{C}$...T120 $0^{\circ} \mathrm{C}$ Da $-60^{\circ} \mathrm{C}<\mathrm{Ta}<+105^{\circ} \mathrm{C}$

UL: Class I Division 2 Groups A, B, C, D
Class II Division 2 Groups F, G
SIL certificate: Up to SIL 3 certified by TÜV
Protection rating: IP 66 / 67
Nema 4 4X on request
Temperature:
-20 to $+80^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ standard temperature range
-60 to $+105^{\circ} \mathrm{C}\left(-76\right.$ to $\left.+221^{\circ} \mathrm{F}\right)$ available on request

SF limit switch box

SS limit switch box

SB limit switch box

SF - SS - SB limit switch box series

Abstract

Nomenclature

\section*{Box} $\mathrm{SB}=$ Aluminium body with polycarbonate cover SF = Aluminium enclosure SS $=316$ stainless steel enclosure

\section*{Switch} $01=$ SPDT el.mech. switch silver plated contacts $03=$ SPDT el.mech. switch gold plated contacts (for Ex'ia') $1 \mathrm{~F}=$ DPDT el.mech. switch silver plated contacts C4 = SPDT magnetic hermetically sealed reed switch (for Ex'ia' low temperature) C8 = DPDT magnetic hermetically sealed reed switch (for Ex'ia' low temperature) N1 = SPDT magnetic hermetically sealed silver plated snap acting contacts N3 = SPDT magnetic hermetically sealed gold plated snap acting contacts N4 = DPDT magnetic hermetically sealed silver plated snap acting contacts $62=$ Inductive proximity NAMUR sensor SJ3,5-SN 2 wire NC logic (for Ex'ia' low temperature safety function) 70 = Inductive proximity NAMUR sensor NJ2-V3-N 2 wire NC logic (for Ex'ia') $73=$ Inductive proximity sensor model NBB2-V3-E2, 3 wire PNP NO, 10-30 VDC, 0-100 mA 86 = Inductive proximity NAMUR sensor model NJ4-12GK-SN 2 wire NC logic (for Ex'ia' safety function) $\mathrm{TO}=4-20 \mathrm{~mA}$ position transmitter H0 $=4-20 \mathrm{~mA}$ HART position transmitter Atex Ex ia IIC T6 / T4 certified See additional information and options on pages 14-19

\section*{Switch Quantity} $2=2$ switches $3=3$ switches

\section*{Terminals} $0=$ Screw terminals with extra poles for solenoid valve connection 2 = Blue screw type terminals with extra poles for sov connection (for Ex'ia') A $=$ Screw terminal strip 8 = Blue cage clamp terminals (for low temperature and switch codes 62, 63, H0) $\mathrm{E}=$ Cage clamp terminals (for low temperature)

\section*{Coating}

0 = Black powder coating 1 = Blue powder coating E = Electro polished finishing (on SS series)

\section*{Cable Entries} $1=2$ cable entries $1 / 2^{\prime \prime}$ NPT $2=2$ cable entries M20 $\times 1.5 p$

\section*{Visual Position Indicator} $0=3 D$ plastic visual position indicator red and green $1=$ No visual position indicator $T=3 D$ stainless steel position indicator See additional information and options on page 11

\section*{Approval} $W=$ Weather proof $X=$ ATEX and IECEx certified box A $=$ ATEX certified box B $=$ ATEX certified box and SIL2 approval C = ATEX certified box and SIL3 approval $G=E A C$ certification for Russian market $\mathrm{J}=$ CCOE certification for Indian market $U=$ UL certified box * SIL2 / SIL3 options available on request

See additional information and options on page 13

\section*{Marking} $0=$ Standard location $1=$ Instrinsically safe certification $9=$ cULus Class $1 / 2$ Div 2 (with switches code: C4, C8, N1, N3) See additional information and options on page 13

\section*{IP Protection rating}

1 = Weather proof IP66 / IP67 $7=$ NEMA 4 and $4 X$

\section*{Temperature} $\mathrm{A}=$ Ambient temperature range: -20 to $+80^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ $\mathrm{L}=$ Ambient temperature range: -40 to $+80^{\circ} \mathrm{C}\left(-40\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ $\mathrm{P}=$ Ambient temperature range: -60 to $+80^{\circ} \mathrm{C}\left(-76\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ for switch code C 4 $U=$ Ambient temperature range: -20 to $+40^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+104{ }^{\circ} \mathrm{F}\right)$ $\mathrm{B}=$ Ambient temperature range: -20 to $+70^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$

[^0]
HW limit switch box series

Control unit that combines a limit switch box and solenoid valve into a single device. Maximum efficiency with minimum customer effort.

Features

- Twin shaft design
- Self lubricating bushings
- Optional integrated solenoid valve for maximum efficiency and compactness
- 3 or 5 way pneumatic valve with single or double coil configurations
- Aluminium enclosure with thick powder coat paint and integrated NAMUR mounting kit
- Up to 3 cable entries either metric or imperial
- Multiple indicator options
- Easy wiring through the terminal PCB board
- Optional position transmitter boards
- Optional Profibus communication board for complete process handling

Approvals

EAC, UL general purpose
SIL certificate: Up to SIL 2 approval on request
Protection rating: IP66/67
Nema 4 4X on request

Temperature:

-60 to $+105^{\circ} \mathrm{C}\left(-76\right.$ to $\left.+221^{\circ} \mathrm{F}\right)$ standard temperature range
(1L) $C \in E H[\underset{\text { Sulevel2 }}{\mathrm{SIL} \sqrt{ }}$

HW limit switch box

HW limit switch box series

Pneumatical Connection

$0=$ No pneumatic connections
$A=1 / 4^{\prime \prime} \mathrm{NPT} /$ F pneumatical connections

Compact limit switch box for hazardous areas, with explosionproof protection method.

Features

- Twin shaft design
- Metallic self lubricant bushings
- Aluminium or 316L stainless steel housing option for maximum corrosion protection
- 2 cable entries either metric or imperial
- Adjustable mounting kit for NAMUR actuators available on request
- Easy wiring through the terminal PCB board
- Suitable for arctic environments

Approvals

ATEX, IECEx, EAC, CCOE, INMETROL:
Ex II 2GD Ex db IIC T4/T5/T6 Gb
Ex tb IIIC T135/T100/T85 ${ }^{\circ} \mathrm{C} \mathrm{Db}$
Ta: $-55^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C} / 80^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}$

UL (available on Sk series only):

Class I Division 1 Groups A, B, C, D Division 2 Groups A, B, C, D Class II Division 1 Groups E, F, G Division 2 Groups F, G
SIL certificate: Up to SIL 3 certified by TÜV
Protection rating: IP 66 / 67
IP $66 / 6815 \mathrm{~m}$ for 100 hours
Nema 4 4X on request
Temperature:
-20 to $+80^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ standard temperature range
-55 to $+105^{\circ} \mathrm{C}\left(67\right.$ to $\left.+221^{\circ} \mathrm{F}\right)$ available on request

SK limit switch box

Optional adjustable mounting kit for NAMUR actuators

SK - SQ limit switch box series

Nomenclature

Box
 SK = Die-cast aluminium enclosure
 SQ $=316 \mathrm{~L}$ stainless steel enclosure

Switch

01 = SPDT el.mech. switch silver plated contacts
$03=$ SPDT el.mech. switch gold plated contacts
$1 \mathrm{~F}=$ DPDT el.mech. switch silver plated contacts
C4 = SPDT magnetic hermetically sealed reed switch
N1 = SPDT magnetic hermetically sealed silver plated snap acting contacts
N3 = SPDT magnetic hermetically sealed gold plated snap acting contacts
73 = Inductive proximity sensor model NBB2-V3-E2, 3 wire PNP NO
See additional information and options on pages 14-19

Switch Quantity

$2=2$ switches

Terminals

$0=$ Screw type terminals with sov connection
$\mathrm{E}=$ Cage clamp terminals with sov connection (for low temp.)

Coating

$0=$ Black powder coating (SK Series) Aluminium
$\mathrm{E}=$ Electro polish finishing (SQ Series) Stainless Steel

Cable Entries

$1=2$ cable entries $1 / 2^{\prime \prime}$ NPT
$2=2$ cable entries M20 $\times 1.5$

Visual Position Indicator

$0=3 D$ plastic visual position indicator red and green
$\mathrm{T}=3 \mathrm{D}$ stainless steel position indicator
See additional information and options on page 11

Approval

X = ATEX and IECEx certified box
D = ATEX and IECEx certified box with SIL2 approval
$\mathrm{E}=$ ATEX and IECEx certified box with SIL3 approval
$G=E A C$ certification for Russian market
I = INMETRO certification for Brazilian market
$N=$ NEPSI certification for Chinese market
J = CCOE certification for Indian market
$U=$ UL certified box (only for SK series)
$W=$ Weather proof

* SIL2 / SIL3 options available on request
See additional information and options on page 13

Marking

$0=$ Standard location
2 = Certification marking: Ex II 2GD Exd IIC
$7=$ cULus Class $1 / 2$ Div1 (only for SK series)
$8=$ cULus Class $1 / 2$ Div $1 / 2$ with switches code: C4, N1, N3. (Only for SK series)
See additional information and options on page 13

IP Protection rating

1 = Weather proof IP66/IP67
3 = Weather proof IP66/IP68
$7=$ Nema 4 and $4 X$
Temperature
Temperature
A = Ambient temperature range: -20 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-4\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}
A = Ambient temperature range: -20 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-4\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}
L = Ambient temperature range: -40 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-40\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}
L = Ambient temperature range: -40 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-40\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}
N=Ambient temperature range: -55 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-67\mathrm{ to +176 '}\textrm{F})\mathrm{ for switch code C4
N=Ambient temperature range: -55 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-67\mathrm{ to +176 '}\textrm{F})\mathrm{ for switch code C4
Material
Material
3 = Die-cast aluminium heavy duty body and cover (on SK series)
3 = Die-cast aluminium heavy duty body and cover (on SK series)
7 = 316L Stainless steel heavy duty enclosure (on SQ series)
7 = 316L Stainless steel heavy duty enclosure (on SQ series)

Note: Optional mounting kit for NAMUR actuators ordering code: KN07

SY - SW limit switch box series

Limit switch box for heavy duty explosionproof applications in the oil \& gas and petrochemical industries, both on-shore and off-shore.

Features

- Twin shaft design
- Metallic self lubricating bushings
- Copper free aluminium or 316 stainless steel housing option for maximum corrosion protection
- Up to 4 cable entries either metric or imperial
- Multiple indicator options
- Easy wiring through the terminal PCB board
- High volume for the maximum wiring comfort
- Optional position transmitter board
- Suitable for artic environments

Approvals

ATEX, IECEx, EAC, CCOE, INMETRO, NEPSI:
Ex II 2GD Ex db IIC T4/T5/T6 Gb
Ex tb IIIC T140/T110/T110${ }^{\circ} \mathrm{CDb}$
Ta: $-60^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C} / 80^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}$
UL:
Class I Division 1 Groups B, C, D Division 2 Groups A, B, C, D Class II Division 1 Groups E,F,G Division 2 Groups F, G
SIL certificate: Up to SIL 3 certified by TÜV
Protection rating: IP 66 / 6810 m for 48 hours
Nema 4 4X on request

Temperature:

-20 to $+80^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ as standard temperature range
-60 to $+105^{\circ} \mathrm{C}\left(-76\right.$ to $\left.+221^{\circ} \mathrm{F}\right)$ available on request

SY limit switch box

SW limit switch box

SY - SW limit switch box series

SX - SH limit switch box series

Limit switch box designed for explosionproof applications.

Features

- Twin shaft design
- Metallic self lubricating bushings
- Aluminium enclosure with thick protective powder coating
- Up to 3 cable entries either metric or imperial
- Multiple indicator options
- Easy wiring through the terminal PCB board

Approvals

ATEX, IECEx, EAC, CCOE, INMETRO:
Ex II 2GD Ex db IIB T4/T5/T6 Gb (SX series)
Ex II 2GD Ex db IIB + H2 T4/T5/T6 Gb (SH series)
Ex tb IIIC T135/T100/T85 ${ }^{\circ} \mathrm{CDb}$
Ta: $-20^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C} / 60^{\circ} \mathrm{C}$
UL:
Class I Division 1 Groups C, D Division 2 Groups A, B, C, D
Class II Division 1 Groups E, F, G Division 2 Groups F, G
SIL certificate: Up to SIL 3 certified by TÜV
Protection rating: IP 66 / 67
Nema 4 4X on request

Temperature:

-20 to $+80^{\circ} \mathrm{C}\left(-4\right.$ to $\left.+176^{\circ} \mathrm{F}\right)$ standard temperature range

SX limit switch box

SX - SH limit switch box series

BM - TB limit switch box series

Limit switches for hazardous areas with Exd or Exia protection methods. Designed for linear valves and general purpose applications.

Features

- AISI 316 stainless steel rugged BM series enclosure
- Standard 450 mm flying leads
- Stainless steel or aluminium materials for optional junction box with TB series
- Magnetic or ferrous sensing capabilities
- Subsea application on request, tested up to 300 bar
- Optional subsea cable and connector for underwater link

Approvals

ATEX, EAC, INMETRO:

Ex II 2GD Ex d IIC T6/T5/T4 Gb
Ex tb IIIC $780^{\circ} \mathrm{C} / T 95^{\circ} \mathrm{C} / \mathrm{T} 115^{\circ} \mathrm{C} \mathrm{Db}$
ATEX, IECEx Ex II 1GD Exia IIC T4 Ga Exia IIIC T135${ }^{\circ} \mathrm{C}$ Da $\mathrm{Ta}=-40^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 90^{\circ} \mathrm{C}$

UL: only available on BMC4

Class I, Division 1 and 2, Groups A, B, C and D
Class II, Division 1 Groups E, F and G
Class II Division 2, Groups F and G
SIL certificate: Up to SIL 3 approval on request
Protection rating: BM: IP66 / 68
TB: IP67 / 68
Nema 4 4X on request

BM limit switch box

BM Subsea dimensional drawing

BM UL dimensional drawing

TB dimensional drawing
Option 1

Option 2

$\left.\begin{array}{ll|l|l|l|l|l|l|l|l|l|}\text { Nomenclature } & \text { BM } & \text { N1 } & 1 & 1 & E & - & E & 1 & A & 2\end{array}\right]$

Box

BM $=$ Proximity bolt switch
$\mathrm{TB}=$ Proximity bolt switch with integrated junction box

Switch

C4 = Magnetic SPDT hermetically sealed switch (suitable for Ex'ia')
N1 = Magnetic proximity SPDT hermetically sealed switch, silver plated snap acting contacts

Switch Quantity

$1=1$ switch or sensor
$2=2$ switches (for TB series only)

Terminals

A = Screw type terminals (for TB series)
1 = Flying leads (for BM series)

Coating

0 = Black polyester powder coating (for aluminium TB series)
$\mathrm{E}=$ Stainless steel finishing

Cable Entries

$1=2 \times 1 / 2^{\prime \prime}$ NPT cable entries (for TB series with 2 switches)
$2=2 \times \mathrm{M} 20 \times 1.5 \mathrm{p}$ cable entries (for TB series with 2 switches)
$\mathrm{E}=1 \times \mathrm{M} 20 \times 1.5 \mathrm{p}$ cable entry
$D=1 \times 1 / 2^{\prime \prime}$ NPT cable entry

Visual Position Indicator

$1=$ No visual position indicator
$6=$ LED Indicator (available for UL approval only)

```
Approval*
\(\mathrm{W}=\) Weather proof limit switch box
\(A=\) ATEX certified box
\(G=E A C\) certified box for Russian market, with RTN permit
\(U=\) UL certified box (available on BMC4 option)
\(X=\) ATEX IECEX certification
```

See additional information and options on page 13

Marking

$0=$ Standard location
1 = Certification marking: Ex II 2 GD Exia IIC (available for C4 switch option)
2 = Certification marking: Ex II 2GD Exd \|C
$7=$ CULUS Class $1 / 2$ Div1 (available on BMC4 option)
$8=$ CULUS Class $1 / 2$ Div $1 / 2$ (available on BMC4 option)
See additional information and options on page 13

IP Protection rating

2 = Weather Proof 67 (available on TB series)
3 = Weather Proof IP66/68 (available on BM series)
$6=$ Subsea application up to -40 meters (available on BM series)**
$7=$ Nema 4 4X (available on BMC4 option)
Temperature
Temperature
A = Ambient temperature range: -20 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-4\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}
A = Ambient temperature range: -20 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-4\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}
L = Ambient temperature range: -40 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-40\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}
L = Ambient temperature range: -40 to +80 }\mp@subsup{}{}{\circ}\textrm{C}(-40\mathrm{ to +176 }\mp@subsup{}{}{\circ}\textrm{F}

Material

$6=316$ stainless steel heavy duty enclosure
$8=316$ stainless steel with aluminium junction box (only for TB series)
3 = Aluminium (available for UL approval only)

* SIL2 and SIL3 available on request
** Subsea cable with fast connector with standard length as follow: 5, 20, 40 mt

Sensing Distance Chart

Sensing Distance	Switch	Direction A [Values in mm]		Direction B [Values in mm]			
				Target distance: 2 mm		Target distance: 1 mm	
	BMN1	PI : Max 2	DO: 6	PI : 3	DO: 12	PI : 7	DO: 12
	BMC4	PI : 3,6	DO: 6	PI : 4	DO: 5	PI : 4,5	DO: 7
Frequency Range	BMN1	Max 30 Hz					
	BMC4	Max 100 Hz					
Response Time	BMN1	Single operation < 2 ms		Operation in frequency ($10 \div 30 \mathrm{~Hz}$) < 1 ms			
	BMC4			2 ms			

Notes:
PI: Is the point where the switch first operates
DO: Is the point where the switch is released.
PI \& DO values refers to the distance between the 2 axis of BOLT switch and target
Target distance refers to the distance between the 2 opposite faces of BOLT switch and target.
For BMN1 switch the maximum operating distance is 2 mm using a properly size ferrous target.
This distance may be increased using a magnetic target (optional).
BMC4 switch is supplied with its standard magnetic target.
Optional magnetic target to increase the sensing range of the switch are available. For any kind of request please contact SOLDO,

Limit switch box created and engineered for manual valve application in explosionproof environments.

Features

- Proximity non-contact design
- Easy to install and simple to maintain
- Copper free aluminium or 316 stainless steel housing option for maximum corrosion protection
- Single or double cable entries options either metric or imperial
- Easy wiring through terminal PCB board
- Suitable for artic environments

Approvals

ATEX, IECEx, EAC, INMETRO:
Ex II 2GD
Ex db IIC T6/T5/T4 Gb
Ex tb IIIC T85/T100/T120 ${ }^{\circ} \mathrm{C} \mathrm{Db}$
$\mathrm{Ta}=-65^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 105^{\circ} \mathrm{C}$
UL:
Class I, Division 1 and 2, Groups A, B, C and D
Class II, Division 1 Groups E, F and G
Class II Division 2, Groups F and G
SIL certificate: Up to SIL 2 approval on request
Protection rating: IP66/67
IP66 / 6815 m for 70 hours
Nema 4 4X on request

ES Easy limit switch box

ES Easy limit switch box

Nomenclature

Box

ES = Manual valve magnetic switch box
Switch
N1 = Snap acting, hermetically sealed, silver contacts SPDT switch, rating max N3 = Snap acting, hermetically sealed, gold contacts SPDT switch, rating max C4 = Inert gas hermetically sealed, rhodium contacts SPDT switch, rating max See additional information and options on pages 14-19

Switch Quantity

2 = Quantity of switch

Terminals

$0=$ Screw Terminal Strips
Coating
Coating
0 = Black powder coating
0 = Black powder coating
E = Electro polish finishing
E = Electro polish finishing
Cable Entries
$1=2 \times 1 / 2^{\prime \prime}$ NPT cable entries
$2=2 \times \mathrm{M} 20 \times 1.5 \mathrm{p}$ cable entries
D $=1 \times 1 / 2^{\prime \prime}$ NPT cable entry (standard option)
$\mathrm{E}=1 \times \mathrm{M} 20 \times 1.5 \mathrm{p}$ cable entry

Visual Position Indicator

$1=$ No Visual Position Indicator

Approval

$U=$ UL certification
$\mathrm{S}=$ UL certification with SIL2 approval
$X=$ ATEX and IECEx certification
D = ATEX and IECEx certification with SIL2 approval
See additional information and options on page 13
Marking
Marking
2 = Certification marking: Ex II 2GD Exd IIC
2 = Certification marking: Ex II 2GD Exd IIC
See additional information and options on page }1
See additional information and options on page }1
IP Protection rating
$1=$ IP66/67 (standard option)
$2=$ IP66/68 15 m for 70 hours
Temperature
Temperature

L}=\mathrm{ Ambient temperature range: -40 to + 80 % C (-40 to +176 尔)
L}=\mathrm{ Ambient temperature range: -40 to + 80 % C (-40 to +176 尔)

Material
Material
4 = Copper free aluminium body and cover
4 = Copper free aluminium body and cover
6 = 316 stainless steel body and cover
6 = 316 stainless steel body and cover

Mounting Kits

The KN and KNC mounting kit series have been designed to mount almost any device on a NAMUR pattern actuator.
 KN and KNC mounting kits are made from AISI 304 stainless steel to provide a reliable solution to install your ISO F05 drilled device to complete the automated valve package.

NAMUR pattern VDI / VDE 3845	KN	KNC	KN07
30×80 pinion height 20 mm	01	01	OK
30×130 pinion height 30 mm	02	02	OK
30×80 pinion height 30 mm	03	03	OK
30×130 pinion height 50 mm	04	04	OK
30×80 pinion height 40 mm	05	-	OK
30×130 pinion height 40 mm	-	05	OK
25×50 pinion height 20 mm	-	32	-
Mounting kit dedicated to all Soldo limit switch box series (excluding SP, SM series)			-
Adjustable mounting kit dedicated to SK and SQ series only	-	-	\therefore

Mounting Kits

Linear Mounting Kit

Linear diaphragm and piston actuators have always been problematic to mount, often requiring external switches to indicate position, therefore losing the flexibility and benefits of a limit switch box.

The new linear universal mounting kit provides a proven system to fit every limit switch box in our range to a linear valve from 20 up to 250 mm stroke with two different kit layouts: 20-150 mm stroke; 100-250 mm stroke.

The mounting kit includes a specific position dome indicator, perfectly showing the open/close position status.

The graduated lever system, combined with the remote pin connection, offers great flexibility to fit a huge variety of systems and offers precise adjustment on the go.

Actuator Mount Patterns Compatibility

Appendix A: Equipment Certification Requirements for Hazardous Locations

ATEX \& IECEx

Typical ATEX \& IECEx Marking [*ATEX only]

Protection Concepts

Type of Protection	Symbol	Typical IEC EPL	Typical Zone(s)	IEC Standard	Basic Concept of Protection
Electrical Equipment for Gases, Vapours and Mists (G)					
General Requirements	-	-	-	IEC 60079-0	-
Optical Radiation	$\begin{aligned} & \text { Op pr } \\ & \text { Op sh } \\ & \text { Op is } \end{aligned}$	$\begin{array}{\|l\|l} \mathrm{Gb} \\ \mathrm{Ga} \\ \mathrm{Ga} \end{array}$	$\begin{aligned} & 1,2 \\ & 0,1,2 \\ & 0,1,2 \end{aligned}$	IEC 60079-28	Protection against ignitions from optical radiation
Increased Safety	$\begin{array}{\|l} \text { eb } \\ \text { ec } \end{array}$	$\begin{array}{\|l\|l} \mathrm{Gb} \\ \mathrm{Gc} \end{array}$	$l_{2}^{1,2}$	IEC 60079-7	No arcs, sparks or hot surfaces. Enclosure IP54 or better
Type ' n ' (non-sparking)	nA	Gc	2	IEC 60079-15	
Flameproof	$\begin{array}{\|l} \mathrm{da} \\ \mathrm{db} \\ \mathrm{dc} \end{array}$	$\begin{array}{\|l} \mathrm{Ga} \\ \mathrm{~Gb} \\ \mathrm{Gc} \end{array}$	$\begin{aligned} & 0,1,2 \\ & 1,2 \\ & 2 \end{aligned}$	IEC 60079-1	Contain the explosion, quench the flame
Type ' n ' (enclosed break)	nC	Gc	2	IEC 60079-15	
Quartz / Sand Filled	q	Gb	1, 2	\|IEC 60079-5	Quench the flame
Intrinsic Safety	$\left\lvert\, \begin{aligned} & \text { ia } \\ & \text { ib } \\ & \text { ic } \end{aligned}\right.$	$\begin{array}{\|l\|l} \mathrm{Ga} \\ \mathrm{~Gb} \\ \mathrm{Gc} \end{array}$	$\left\lvert\, \begin{aligned} & 0,1,2 \\ & 1,2 \\ & 2 \end{aligned}\right.$	IEC 60079-11	Limit the energy of sparks and surface temperatures
Type ' n ' (sealing \& hermetic sealing)	nC	Gc	2	IEC 60079-15	Keep the flammable gas out
Type ' n ' (restricted breathing)	nR	Gc	2	IEC 60079-15	
Encapsulation	$\begin{aligned} & \mathrm{ma} \\ & \mathrm{mb} \\ & \mathrm{mc} \end{aligned}$	$\begin{aligned} & \text { Ga } \\ & \text { Gb } \\ & \text { Gc } \end{aligned}$	$\begin{aligned} & 0,1,2 \\ & 1,2 \\ & 2 \end{aligned}$	IEC 60079-18	
Electrical Equipment for Combustible Dusts (D)					
General Requirements	-	-	-	IEC 60079-0	-
Optical Radiation	$\begin{aligned} & \text { Op pr } \\ & \text { Op sh } \\ & \text { Op is } \end{aligned}$	$\left\lvert\, \begin{array}{l\|l} \mathrm{Db} \\ \mathrm{Da} \\ \mathrm{Da} \end{array}\right.$	$\left\lvert\, \begin{aligned} & 21,22 \\ & 20,21,22 \\ & 20,21,22 \end{aligned}\right.$	IEC 60079-28	Protection against ignitions from optical radiation
Enclosure	$\left\lvert\, \begin{aligned} & \mathrm{ta} \\ & \mathrm{ta} \\ & \mathrm{tb} \\ & \mathrm{tc} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Da} \\ & \mathrm{Db} \\ & \mathrm{Dc} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 20,21,22 \\ & 21,22 \\ & 22 \end{aligned}\right.$	IEC 60079-31	Standard protection for dusts, rugged tight enclosure
Intrinsic Safety	$\left\lvert\, \begin{aligned} & \text { ia } \\ & \text { ib } \\ & \text { ic } \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Da} \\ & \mathrm{Db} \\ & \mathrm{DC} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 20,21,22 \\ & 21,22 \\ & 22 \end{aligned}\right.$	IEC 60079-11	Limit the energy of sparks and surface temperatures
Encapsulation	$\left\lvert\, \begin{aligned} & \mathrm{ma} \\ & \mathrm{mb} \\ & \mathrm{mc} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \mathrm{Da} \\ & \mathrm{Db} \\ & \mathrm{DC} \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 20,21,22 \\ & 21,22 \\ & 22 \end{aligned}\right.$	IEC 60079-18	Protection by encapsulation of incendive parts
Electrical Equipment for Combustible Dusts (D)					
	-	-	-	EN 13463-1	Low potential energy
General Requirements	h	$\begin{array}{\|l} \mathrm{Ga}, \mathrm{~Gb}, \mathrm{Gc} \\ \mathrm{Da}, \mathrm{Db}, \mathrm{Dc} \end{array}$	$\begin{aligned} & 0,1,2 \\ & 20,21,22 \end{aligned}$	IEC 80079-36	
Flow Restricted Enclosure	fr	-	-	EN 13463-2	Relies on tight seals, closely matched joints and tough enclosures to restrict the breathing of the enclosure
Flameproof Enclosure	d	-	-	EN 13463-3	
Constructional Safety	c	-	$\left\lvert\, \begin{aligned} & 0,1,2 \\ & 20,21,22 \end{aligned}\right.$	EN 13463-5	Ignition hazards eliminated by good engineering methods
	h	$\begin{array}{\|l} \text { Ga, Gb, Gc } \\ \mathrm{Da}, \mathrm{Db}, \mathrm{Dc} \end{array}$	$\begin{aligned} & 0,1,2 \\ & 20,21,22 \end{aligned}$	IEC 80079-37	
Control of Ignition Source	b	-	-	EN 13463-6	Control equipment fitted to detect malfunctions
	h	Ga, Gb, Gc Da, Db, Dc	$\begin{aligned} & 0,1,2 \\ & 20,21,22 \end{aligned}$	IEC 80079-37	

cCS Aus
Typical North American Marking (CSA)

Class II, Division 1, Groups E,F,G

Protection Concepts

Type of Protection	Code	Country	Class	Division / Zone	Standard	Basic Concept of Protection
Electrical Equipment for Flammable Gas, Vapors and Mists - Class I						
General Requirements	$\begin{aligned} & \text { AEx } \\ & \text { Ex } \end{aligned}$	US CA US CA	Class I Class I Class I Class I	Division 1 \& 2 Division 1 \& 2 Zone 1 \& 2 Zone 1 \& 2	$\begin{aligned} & \text { FM } 3600 \\ & \text { ISA 60079-0 } \\ & \text { CSA 60079-0 } \end{aligned}$	
Increased Safety	$\left\lvert\, \begin{aligned} & \text { AExe } \\ & \text { Exe } \end{aligned}\right.$	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	Class I	Zone 1 Zone 1	$\begin{aligned} & \text { ISA 60079-7 } \\ & \text { CSA C22.2 No. 60079-7 } \end{aligned}$	No arcs, sparks or hot surfaces
Non-Incendive	$\begin{aligned} & (\mathrm{NI}) \\ & (\mathrm{NI}) \end{aligned}$	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	Class I Class I	Division 2 Division 2	$\begin{aligned} & \text { ISA } 12.12 .01 \text { / FM } 3611 \\ & \text { C22.2 No. } 213 \end{aligned}$	
Non-Sparking	AEx nA ExnA	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	Class I Class	Zone 2 Zone 2	$\begin{aligned} & \text { ISA 60079-15 } \\ & \text { CSA C22.2 No. 60079-15 } \end{aligned}$	
Explosion Proof	$\begin{aligned} & (X P) \\ & (X P) \end{aligned}$	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	Class I Class I	Division 1 Division 1	$\begin{aligned} & \text { UL } 1203 \text { / FM } 3615 \\ & \text { C22.2 No. } 30 \end{aligned}$	Contain the explosion and extinguish the flame
Flameproof	$\begin{aligned} & \text { AExd } \\ & \text { AExd } \\ & \text { Exd } \end{aligned}$	$\begin{aligned} & \text { US } \\ & \text { US } \\ & \text { CA } \end{aligned}$	$\begin{aligned} & \text { Class I } \\ & \text { Class I } \\ & \text { Class I } \\ & \hline \end{aligned}$		$\begin{aligned} & \text { ISA 60079-1 } \\ & \text { UL } 1203 \text { /FM } 3615 \\ & \text { CSA } 60079-1 \end{aligned}$	
Enclosed Break	AExnC ExnC	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	Class I Class I	Zone 2 Zone 2	$\begin{aligned} & \text { ISA 60079-15 } \\ & \text { CSA C22.2 No. 60079-15 } \end{aligned}$	
Intrinsic Safety	(IS) (IS) AEx ia AEx ib EXia Ex ib	$\begin{aligned} & \text { US } \\ & \text { CA } \\ & \text { US } \\ & \text { US } \\ & \text { CA } \\ & \text { CA } \end{aligned}$	Class I Class I	Division 1 Division 1 Zone 0 Zone 1 Zone 0 Zone 1	UL 913 / FM 3610 C22.2 No. 157 ISA 60079-11 / FM 3610 ISA 60079-11 / FM 3610 CSA C22.2 No. 60079-11 CSA C22.2 No. 60079-11	Limit energy of sparks and surface temperature
Limited Energy	AExnC ExnL	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	Class I Class	$\begin{aligned} & \text { Zone } 2 \\ & \text { Zone 2 } \end{aligned}$	$\begin{aligned} & \text { ISA 60079-15 } \\ & \text { CSA C22.2 No. 60079-15 } \end{aligned}$	
Restricted Breathing	AEx nR ExnR	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	$\begin{aligned} & \text { Class I } \\ & \text { Class I } \end{aligned}$	$\begin{aligned} & \text { Zone } 2 \\ & \text { Zone } 2 \end{aligned}$	$\begin{aligned} & \text { ISA 60079-15 } \\ & \text { CSA C22.2 No. 60079-15 } \end{aligned}$	Keep flammable gas out
Encapsulated	AEx ma AEx m Exm AEx mb	$\begin{aligned} & \text { US } \\ & \text { US } \\ & \text { CA } \\ & \text { US } \end{aligned}$	Class I Class I Class I Class I	Zone 0 Zone 1 Zone 1 Zone 1	ISA 60079-18 ISA 60079-18 CSA C22.2 No. 60079-18 ISA 60079-18	
Electrical Equipment for Flammable Gas, Vapors and Mists - Class I						
General Requirements	Ex	$\begin{aligned} & \text { US } \\ & \text { CA } \\ & \text { US } \\ & \text { CA } \\ & \text { US } \end{aligned}$	Class II Class II Class III Class III -	Division 1 $\&$ 2 Division 1 $\&$ Division 1 2 Divis Division 1 $\&$ Zone Zone 20, 21, 22	$\begin{aligned} & \text { FM } 3600 \\ & \text { CSA C22.2 No. } 0 \\ & \text { FM } 3600 \\ & \text { CSA C22.2 No. } 0 \\ & \text { ISA 60079-0 } \end{aligned}$	
Dust Ignition Proof		$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	Class II Class II	Division 1 Division 1	JUL 1203 / FM 3616 CSA C22.2 No. 25	Keep combustible dust out
Dust Protected	-	$\begin{aligned} & \text { US } \\ & \text { CA } \end{aligned}$	$\begin{aligned} & \text { Class II } \\ & \text { Class II } \end{aligned}$	Division 2 Division 2	$\begin{aligned} & \text { ISA } 12.12 .01 \text { / FM } 3611 \\ & \text { CSA C22.2 No. } 25 \end{aligned}$	
Protection by Enclosure	AEx ta AEx tb AEx tc Ex ta Ex tb Ex tc	$\begin{aligned} & \text { US } \\ & \text { US } \\ & \text { US } \\ & \text { CA } \\ & \text { CA } \\ & \text { C } \end{aligned}$	Class II Class II Class II Class II Class II Class II	Zone 20 Zone 21 Zone 22 Zone 20 Zone 21 Zone 22	ISA 60079-31 ISA 60079-31 ISA 60079-31 CSA C22.2 No. 60079-31 CSA C22.2 No. 60079-31 CSA C22.2 No. 60079-31	
Encapsulation	AEx maD AEx mbD	$\begin{aligned} & \text { US } \\ & \text { US } \end{aligned}$		$\begin{aligned} & \text { Zone } 20 \\ & \text { Zone } 21 \end{aligned}$	$\begin{aligned} & \text { ISA 60079-18 } \\ & \text { ISA } 60079-18 \end{aligned}$	
Intrinsic Safety	(IS) (IS) AEx iaD AEx ibD (IS) (IS)	$\begin{aligned} & \text { US } \\ & \text { CA } \\ & \text { US } \\ & \text { US } \\ & \text { US } \\ & \text { CA } \end{aligned}$	Class II Class II Class III Class III	Division 1 Division 1 Zone 20 Zone 21 Division 1 Division 1	UL 913 / FM 3610 CSA C22.2 No. 157 ISA 60079-11 ISA 60079-11 UL 913 / FM 3610 CSA C22.2 No. 157	Limit energy of sparks and surface temperature

Appendix A: Equipment Certification Requirements for Hazardous Locations

ATEX \& IECEx Certificate Number

Suffixes: U - component certification
X - special conditions for safe use apply

Apparatus Groups [ATEX and IECEx]

Group	Environment	Location	Typical Substance
I	Gases, Vapours	Coal Mining	Methane (Fire damp)
IIA		Surface and other locations	Acetic acid, Acetone, Ammonia, Butane, Cyclohexane, Gasoline (petrol), Kerosene, Methane (natural gas) (nonmining), Methanol (methyl alcohol), Propane, Propan-2-ol (iso-propyl alcohol), Toluene, Xylene
IIB			Di-ethyl ether, Ethylene, Methyl ethyl ketone (MEK), Propan-1-ol (n-propyl alcohol), Ethanol (ethyl alcohol)
IIC			Acetylene, Hydrogen, Carbon disulphide
IIIA	Combustible Dusts	Surface and other locations	Combustible flyings
IIIB			Non-conductive
IIIC			Conductive

Apparatus Groups (US / CAN)

Substance	Hazard Class	NEC 500	NEC 505
Acetylene	Class I Flammable Gases	Group A	IIC
Hydrogen		Group B	IIC
Ethylene		Group C	IIB
Propane		Group D	IIA
Methane (mining)		Group D	-
Combustible Metal Dusts	Class II Combustible Dusts	Group E	-
Combustible Carbonaceous Dusts		Group F	-
Combustible Dusts not in Group E or F (Flour, Grain, Wood, Plastics, Chemicals)		Group G	-
Combustible Fibers and Flyings	Class III Fibers and Flyings	-	-

Classification of Divisions and Zones

Type of Area	NEC and CEC*	ATEX and IEC	Definitions
Continuous hazard	Division 1	Zone 0 / Zone 20 Cat 1	A place in which an explosive atmosphere is continuously present
Intermittent hazard	Division 1	Zone 1 / Zone 21 Cat 2	A place in which an explosive atmosphere is likely to occur in normal operation
Hazard under abnormal conditions	Division 2	Zone 2 / Zone 22 Cat 3	A place in which an explosive atmosphere is not likely to occur in normal operation, but may occur for short periods

Temperature Classification

Classification of maximum surface temperatures for Group II Electronic Equipment (T Class).

Dusts Typical Ignition Temperatures

Dusts	Cloud	Layer
Aluminium	$590^{\circ} \mathrm{C}\left(1,094{ }^{\circ} \mathrm{F}\right)$	$>450{ }^{\circ} \mathrm{C}\left(842{ }^{\circ} \mathrm{F}\right)$
Coal dust (lignite)	$380^{\circ} \mathrm{C}$ ($716^{\circ} \mathrm{F}$)	$225^{\circ} \mathrm{C}$ ($437{ }^{\circ} \mathrm{F}$)
Flour	$490{ }^{\circ} \mathrm{C}$ ($\left.914{ }^{\circ} \mathrm{F}\right)$	$340^{\circ} \mathrm{C}\left(644{ }^{\circ} \mathrm{F}\right)$
Grain dust	$510^{\circ} \mathrm{C}$ (950 ${ }^{\circ} \mathrm{F}$)	$300{ }^{\circ} \mathrm{C}\left(572{ }^{\circ} \mathrm{F}\right)$
Methyl cellulose	$420{ }^{\circ} \mathrm{C}$ ($788{ }^{\circ} \mathrm{F}$)	$320^{\circ} \mathrm{C}\left(608{ }^{\circ} \mathrm{F}\right)$
Phenolic resin	$530^{\circ} \mathrm{C}$ (986 ${ }^{\circ} \mathrm{F}$)	$>450^{\circ} \mathrm{C}\left(842{ }^{\circ} \mathrm{F}\right)$
Polythene	$420^{\circ} \mathrm{C}\left(788^{\circ} \mathrm{F}\right)$	(melts) ${ }^{\circ} \mathrm{C}$
PVC	$700^{\circ} \mathrm{C}\left(1,292{ }^{\circ} \mathrm{F}\right)$	$>450^{\circ} \mathrm{C}\left(842{ }^{\circ} \mathrm{F}\right)$
Soot	$810^{\circ} \mathrm{C}\left(1,490{ }^{\circ} \mathrm{F}\right)$	$570^{\circ} \mathrm{C}\left(1,058{ }^{\circ} \mathrm{F}\right)$
Starch	$460^{\circ} \mathrm{C}\left(860{ }^{\circ} \mathrm{F}\right)$	$435{ }^{\circ} \mathrm{C}\left(815{ }^{\circ} \mathrm{F}\right)$
Sugar	$490{ }^{\circ} \mathrm{C}\left(914{ }^{\circ} \mathrm{F}\right)$	$460^{\circ} \mathrm{C}\left(860^{\circ} \mathrm{F}\right)$

Ingress Protection Codes

First Number (protect from solid bodies)		Second Number (protect from water)	
0	No protection	0	No protection
1	Objects $>50 \mathrm{~mm}$	1	Vertical drip
2	Objects $>12.5 \mathrm{~mm}$	2	Angled drip
3	Objects $>2.5 \mathrm{~mm}$	3	Spraying
4	Objects $>1.0 \mathrm{~mm}$	4	Splashing
5	Dust-protected	5	Jetting
6	Dust-tight	6	Powerful jetting
		7	Temporary immersion
		8	Continuous immersion

Enclosure Type Ratings (NEMA / CSA / UL)

Type	Area	Brief Definition
1	Indoor	General purpose
2	Indoor	Protection against angled dripping water
$3,3 R, 35$	Indoor / Outdoor	Protection against rain, snow
$4,4 \mathrm{X}$	Indoor / Outdoor	Protection against rain, snow, hose directed water
5	Indoor	Protection against angled dripping water, dust, fibers, flyings
6	Indoor / Outdoor	Protection against temporary submersion
6 P	Indoor / Outdoor	Protection against prolonged submersion
$12,12 \mathrm{~K}$	Indoor	Protection against circulating dust, fibers, flyings
13	Indoor	Protection against circulating dust, fibers, flyings, seepage

[^1]
[^0]: Material
 2 = Die-cast aluminium heavy duty body and polycarbonate cover (on SB series)
 4 = Copper free aluminium (on SF series)
 $6=316$ stainless steel heavy duty enclosure (on SS series)

[^1]: * On occasion the ATEX and IEC Zones may be used in the corresponding NEC and CEC system

